--- title: 第四次作业(答案) mathjax: true date: 2020-11-06 09:57:17 tags: --- # P137-3 ```C #include #include int main() { // 输入 printf("最大公约数与最小公倍数计算"); int m, n; printf("请输入正整数m和n:\nm = "); if (scanf("%d", &m) != 1 || m <= 0) { fprintf(stderr, "非法输入!\n"); exit(EXIT_FAILURE); } printf("n = "); if (scanf("%d", &n) != 1 || n <= 0) { fprintf(stderr, "非法输入!\n"); exit(EXIT_FAILURE); } // a为较大者,b为较小者 int a, b; if (m > n) { a = m; b = n; } else { a = n; b = m; } // 求最大公因数 int t = 1; while (t != 0) { t = a % b; a = b; b = t; } // 最小公倍数 int lcm = m * n / a; printf("最大公因数:%d\n最小公倍数:%d\n", a, lcm); return 0; } ``` # P137-5 $$ \begin{align*} S_{n} &= a + aa + aaa + \cdots + \overbrace{aa \cdots a}^{n个a} \\ &= a \times 10^{n - 1} + 2a \times 10^{n - 2} + \cdots + na \\ &= (((a \times 10 + 2a) \times 10 + 3a) \times 10 + \cdots ) + na \end{align*} $$ 由此,我们编写程序: ```C #include int main() { int a, n; printf("P137-5\na = "); scanf("%d", &a); printf("n = "); scanf("%d", &n); int sum = a; for (int i = 2; i <= n; ++i) { sum *= 10; sum += a * i; } printf("S = %d\n", sum); return 0; } ``` # P138-14 迭代公式可表示为: $$ \begin{equation*} x_{n + 1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} \end{equation*} $$ 设 $$ \begin{equation*} f(x) = 2x^{3} - 4x^{2} + 3 x - 6 \end{equation*} $$ 则 $$ \begin{align*} f'(x) &= 6x^{2} - 8x + 3 \\ x_{n + 1} &= x_{n} - \frac{f(x_{n})}{f'(x_{n})} \\ &= x_{n} - \frac{2x_{n}^{3} - 4x_{n}^{2} + 3x_{n} - 6}{6x_{n}^{2} - 8x_{n} + 3} \\ &= \frac{4x_{n}^{3} - 4x_{n}^{2} + 6}{6x_{n}^{2} - 8x_{n} + 3} \\ \end{align*} $$ 不妨设迭代的终止条件为: $$ \begin{equation*} |f(x_{n})| < 10^{-6} \end{equation*} $$ 此时求得的 $x_{n}$ 可以作为一个近似解。 ```C #include #include int main() { double t = 1e-6; double x = 1.5; while(fabs(2 * pow(x, 3) - 4 * pow(x, 2) + 3 * x - 6) >= t) { x = (4 * pow(x, 3) - 4 * pow(x, 2) + 6) / (6 * pow(x, 2) - 8 * x + 3); } printf("P138-14\nx = %.3f\n", x); return 0; } ``` # P138-15 ```C #include #include int main() { double a = -10, b = 10, c = 0; double t = 1e-6; double fa = 2 * pow(a, 3) - 4 * pow(a, 2) + 3 * a - 6; double fc = 2 * pow(c, 3) - 4 * pow(c, 2) + 3 * c - 6; while (fabs(2 * pow(c, 3) - 4 * pow(c, 2) + 3 * c - 6) >= t) { if (fa * fc < 0) { b = c; } else { a = c; fa = fc; } c = (a + b) / 2; fc = 2 * pow(c, 3) - 4 * pow(c, 2) + 3 * c - 6; } printf("P138-15\nx = %.3f\n", c); return 0; } ``` # 选择排序 ```C #include #include #define LEN 10 int main() { printf("请输入%d个数字,用空格分隔:\n", LEN); int a[LEN]; for (int i = 0; i < LEN; ++i) { scanf("%d", a + i); } for (int i = 0; i < LEN - 1; ++i) { int m = i; for (int j = i + 1; j < LEN; ++j) { if (a[j] < a[m]) { m = j; } } if (m != i) { int tmp = a[i]; a[i] = a[m]; a[m] = tmp; } } for (int i = 0; i < LEN; ++i) { printf("%d ", a[i]); } printf("\n"); return 0; } ```