117 lines
4 KiB
Python
117 lines
4 KiB
Python
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from .image import loadres
|
|
|
|
|
|
class DigitReader:
|
|
def __init__(self, template_dir=None):
|
|
if not template_dir:
|
|
template_dir = Path(os.path.dirname(os.path.abspath(__file__))) / Path(
|
|
"templates"
|
|
)
|
|
if not isinstance(template_dir, Path):
|
|
template_dir = Path(template_dir)
|
|
self.time_template = []
|
|
self.drone_template = []
|
|
for i in range(10):
|
|
self.time_template.append(loadres(f"orders_time/{i}", True))
|
|
self.drone_template.append(loadres(f"drone_count/{i}", True))
|
|
|
|
def get_drone(self, img_grey, h=1080, w=1920):
|
|
drone_part = img_grey[
|
|
h * 32 // 1080 : h * 76 // 1080, w * 1144 // 1920 : w * 1225 // 1920
|
|
]
|
|
drone_part = cv2.resize(drone_part, (81, 44), interpolation=cv2.INTER_AREA)
|
|
result = {}
|
|
for j in range(10):
|
|
res = cv2.matchTemplate(
|
|
drone_part,
|
|
self.drone_template[j],
|
|
cv2.TM_CCORR_NORMED,
|
|
)
|
|
threshold = 0.95
|
|
loc = np.where(res >= threshold)
|
|
for i in range(len(loc[0])):
|
|
offset = loc[1][i]
|
|
accept = True
|
|
for o in result:
|
|
if abs(o - offset) < 5:
|
|
accept = False
|
|
break
|
|
if accept:
|
|
result[loc[1][i]] = j
|
|
ch = [str(result[k]) for k in sorted(result)]
|
|
return int("".join(ch))
|
|
|
|
def get_time(self, img_grey, h, w):
|
|
digit_part = img_grey[h * 510 // 1080 : h * 543 // 1080, w * 499 // 1920 : w]
|
|
digit_part = cv2.resize(digit_part, (1421, 33), interpolation=cv2.INTER_AREA)
|
|
result = {}
|
|
for j in range(10):
|
|
res = cv2.matchTemplate(
|
|
digit_part,
|
|
self.time_template[j],
|
|
cv2.TM_CCOEFF_NORMED,
|
|
)
|
|
threshold = 0.85
|
|
loc = np.where(res >= threshold)
|
|
for i in range(len(loc[0])):
|
|
x = loc[1][i]
|
|
accept = True
|
|
for o in result:
|
|
if abs(o - x) < 5:
|
|
accept = False
|
|
break
|
|
if accept:
|
|
if len(result) == 0:
|
|
digit_part = digit_part[:, loc[1][i] - 5 : loc[1][i] + 116]
|
|
offset = loc[1][0] - 5
|
|
for m in range(len(loc[1])):
|
|
loc[1][m] -= offset
|
|
result[loc[1][i]] = j
|
|
ch = [str(result[k]) for k in sorted(result)]
|
|
return f"{ch[0]}{ch[1]}:{ch[2]}{ch[3]}:{ch[4]}{ch[5]}"
|
|
|
|
def 识别制造加速总剩余时间(self, img_grey, h, w):
|
|
时间部分 = img_grey[
|
|
h * 665 // 1080 : h * 709 // 1080, w * 750 // 1920 : w * 960 // 1920
|
|
]
|
|
时间部分 = cv2.resize(
|
|
时间部分, (210 * 58 // 71, 44 * 58 // 71), interpolation=cv2.INTER_AREA
|
|
)
|
|
result = {}
|
|
for j in range(10):
|
|
res = cv2.matchTemplate(
|
|
时间部分,
|
|
self.drone_template[j],
|
|
cv2.TM_CCOEFF_NORMED,
|
|
)
|
|
threshold = 0.85
|
|
loc = np.where(res >= threshold)
|
|
for i in range(len(loc[0])):
|
|
offset = loc[1][i]
|
|
accept = True
|
|
for o in result:
|
|
if abs(o - offset) < 5:
|
|
accept = False
|
|
break
|
|
if accept:
|
|
result[loc[1][i]] = j
|
|
ch = [str(result[k]) for k in sorted(result)]
|
|
print(ch)
|
|
if len(ch) == 6:
|
|
return (
|
|
int(f"{ch[0]}{ch[1]}"),
|
|
int(f"{ch[2]}{ch[3]}"),
|
|
int(f"{ch[4]}{ch[5]}"),
|
|
)
|
|
else:
|
|
return (
|
|
int(f"{ch[0]}{ch[1]}{ch[2]}"),
|
|
int(f"{ch[3]}{ch[4]}"),
|
|
int(f"{ch[5]}{ch[6]}"),
|
|
)
|