改写战斗中替换group的逻辑

This commit is contained in:
Elaina 2024-10-13 01:24:58 +08:00
commit 7f89eb0db8
3890 changed files with 82290 additions and 0 deletions

626
mower/utils/matcher.py Normal file
View file

@ -0,0 +1,626 @@
import lzma
import pickle
from typing import Optional, Tuple
import cv2
import numpy as np
import sklearn.pipeline # noqa
import sklearn.preprocessing
import sklearn.svm # noqa
from skimage.metrics import structural_similarity as compare_ssim
from mower import __rootdir__
from mower.utils import typealias as tp
from mower.utils.deprecated import deprecated
from mower.utils.image import cropimg
from mower.utils.log import logger
from mower.utils.vector import va, vs
GOOD_DISTANCE_LIMIT = 0.7
ORB = cv2.ORB_create(nfeatures=100000, edgeThreshold=0)
ORB_no_pyramid = cv2.ORB_create(nfeatures=100000, edgeThreshold=0, nlevels=1)
def keypoints_scale_invariant(img: tp.GrayImage):
return ORB.detectAndCompute(img, None)
def keypoints(img: tp.GrayImage):
return ORB_no_pyramid.detectAndCompute(img, None)
with lzma.open(f"{__rootdir__}/models/svm.model", "rb") as f:
SVC = pickle.loads(f.read())
# build FlannBasedMatcher
# FLANN_INDEX_KDTREE = 1
FLANN_INDEX_LSH = 6
index_params = dict(
algorithm=FLANN_INDEX_LSH,
table_number=1,
key_size=6,
multi_probe_level=0,
)
search_params = dict(checks=50) # 100
flann = cv2.FlannBasedMatcher(index_params, search_params)
def getHash(data: list[float]) -> tp.Hash:
"""calc image hash"""
avreage = np.mean(data)
return np.where(data > avreage, 1, 0)
def hammingDistance(hash1: tp.Hash, hash2: tp.Hash) -> int:
"""calc Hamming distance between two hash"""
return np.count_nonzero(hash1 != hash2)
def aHash(img1: tp.GrayImage, img2: tp.GrayImage) -> int:
"""calc image hash"""
data1 = cv2.resize(img1, (8, 4)).flatten()
data2 = cv2.resize(img2, (8, 4)).flatten()
hash1 = getHash(data1)
hash2 = getHash(data2)
return hammingDistance(hash1, hash2)
class Matcher:
def __init__(self, origin: tp.GrayImage) -> None:
logger.debug(f"{origin.shape=}")
self.origin = origin
self.kp, self.des = keypoints(self.origin)
def in_scope(self, scope):
if scope is None:
return self.kp, self.des
ori_kp, ori_des = [], []
for _kp, _des in zip(self.kp, self.des):
if (
scope[0][0] <= _kp.pt[0] <= scope[1][0]
and scope[0][1] <= _kp.pt[1] <= scope[1][1]
):
ori_kp.append(_kp)
ori_des.append(_des)
logger.debug(f"{scope=}, {len(self.kp)=} -> {len(ori_kp)=}")
return np.array(ori_kp), np.array(ori_des)
@deprecated
def match_old(
self,
query: tp.GrayImage,
draw: bool = False,
scope: tp.Scope = None,
dpi_aware: bool = False,
prescore: float = 0.0,
judge: bool = True,
) -> Optional[tp.Scope]:
"""check if the image can be matched"""
rect_score = self.score(
query,
draw,
scope,
only_score=False,
dpi_aware=dpi_aware,
) # get matching score
if rect_score is None:
return None # failed in matching
else:
rect, score = rect_score
if prescore > 0:
if score[3] >= prescore:
logger.debug(f"{score[3]=} >= {prescore=}")
return rect
else:
logger.debug(f"{score[3]=} < {prescore=}")
return None
if judge and not SVC.predict([score])[0]:
logger.debug(f"{judge=} {SVC.predict([score])[0]=}")
return None
logger.debug(f"{rect=}")
return rect
def score(
self,
query: tp.GrayImage,
draw: bool = False,
scope: tp.Scope = None,
only_score: bool = False,
dpi_aware: bool = False,
) -> Optional[Tuple[tp.Scope, tp.Score]]:
"""scoring of image matching"""
try:
# if feature points is empty
if self.des is None:
logger.debug(f"{self.des=}")
return None
# specify the crop scope
if scope is not None:
ori_kp, ori_des = [], []
for _kp, _des in zip(self.kp, self.des):
if (
scope[0][0] <= _kp.pt[0]
and scope[0][1] <= _kp.pt[1]
and _kp.pt[0] <= scope[1][0]
and _kp.pt[1] <= scope[1][1]
):
ori_kp.append(_kp)
ori_des.append(_des)
logger.debug(f"{scope=}, {len(self.kp)=} -> {len(ori_kp)=}")
ori_kp, ori_des = np.array(ori_kp), np.array(ori_des)
else:
ori_kp, ori_des = self.kp, self.des
# if feature points is less than 2
if len(ori_kp) < 2:
logger.debug(f"{len(ori_kp)=} < 2")
return None
# the height & width of query image
h, w = query.shape
# the feature point of query image
if dpi_aware:
qry_kp, qry_des = keypoints_scale_invariant(query)
else:
qry_kp, qry_des = keypoints(query)
matches = flann.knnMatch(qry_des, ori_des, k=2)
# store all the good matches as per Lowe's ratio test
good = []
for pair in matches:
if (len_pair := len(pair)) == 2:
x, y = pair
if x.distance < GOOD_DISTANCE_LIMIT * y.distance:
good.append(x)
elif len_pair == 1:
good.append(pair[0])
good_matches_rate = len(good) / len(qry_des)
# draw all the good matches, for debug
if draw:
result = cv2.drawMatches(query, qry_kp, self.origin, ori_kp, good, None)
from matplotlib import pyplot as plt
plt.imshow(result)
plt.show()
# if the number of good matches no more than 4
if len(good) <= 4:
logger.debug(f"{len(good)=} <= 4, {len(qry_des)=}")
return None
# get the coordinates of good matches
qry_pts = np.int32([qry_kp[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
ori_pts = np.int32([ori_kp[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
# calculated transformation matrix and the mask
M, mask = cv2.estimateAffine2D(qry_pts, ori_pts, None, cv2.RANSAC)
# if transformation matrix is None
if M is None:
logger.debug("M is None")
return None
else:
logger.debug(f"M={M.tolist()}")
M[0][1] = 0
M[1][0] = 0
avg = (M[0][0] + M[1][1]) / 2
M[0][0] = avg
M[1][1] = avg
# calc the location of the query image
# quad = np.float32([[[0, 0]], [[0, h-1]], [[w-1, h-1]], [[w-1, 0]]])
quad = np.int32([[[0, 0]], [[w, h]]])
quad = cv2.transform(quad, M) # quadrangle
rect = quad.reshape(2, 2).tolist()
# draw the result, for debug
if draw:
matchesMask = mask.ravel().tolist()
origin_copy = cv2.cvtColor(self.origin, cv2.COLOR_GRAY2RGB)
cv2.rectangle(origin_copy, rect[0], rect[1], (255, 0, 0), 3)
draw_params = dict(
matchColor=(0, 255, 0),
singlePointColor=None,
matchesMask=matchesMask,
flags=2,
)
result = cv2.drawMatches(
query, qry_kp, origin_copy, ori_kp, good, None, **draw_params
)
plt.imshow(result)
plt.show()
min_width = max(10, 0 if dpi_aware else w * 0.8)
min_height = max(10, 0 if dpi_aware else h * 0.8)
rect_w = rect[1][0] - rect[0][0]
rect_h = rect[1][1] - rect[0][1]
if rect_w < min_width or rect_h < min_height:
logger.debug(f"{rect_w=}x{rect_h=} < {min_width=}x{min_height=}")
return None
if not dpi_aware:
max_width = w * 1.25
max_height = h * 1.25
if rect_w > max_width or rect_h > max_height:
logger.debug(f"{rect_w=}x{rect_h=} > {max_width=}x{max_height=}")
return None
# measure the rate of good match within the rectangle (x-axis)
better = filter(
lambda m: rect[0][0] < ori_kp[m.trainIdx].pt[0] < rect[1][0]
and rect[0][1] < ori_kp[m.trainIdx].pt[1] < rect[1][1],
good,
)
better_kp_x = [qry_kp[m.queryIdx].pt[0] for m in better]
if len(better_kp_x):
good_area_rate = np.ptp(better_kp_x) / w
else:
good_area_rate = 0
# rectangle: float -> int
rect = np.array(rect, dtype=int).tolist()
rect_img = cropimg(self.origin, rect)
# if rect_img is too small
if rect_img.shape[0] < min_height or rect_img.shape[1] < min_width:
logger.debug(f"{rect_img.shape=} < {min_width=}x{min_height=}")
return None
# transpose rect_img
rect_img = cv2.resize(rect_img, query.shape[::-1])
# draw the result
if draw:
plt.subplot(1, 2, 1)
plt.imshow(query, cmap="gray", vmin=0, vmax=255)
plt.subplot(1, 2, 2)
plt.imshow(rect_img, cmap="gray", vmin=0, vmax=255)
plt.show()
# calc aHash between query image and rect_img
hash = 1 - (aHash(query, rect_img) / 16)
# calc ssim between query image and rect_img
ssim = compare_ssim(query, rect_img, multichannel=True)
# return final rectangle and four dimensions of scoring
result = good_matches_rate, good_area_rate, hash, ssim
if not only_score:
result = rect, result
logger.debug(result)
return result
except Exception as e:
logger.exception(e)
def match(
self,
query: tp.GrayImage,
draw: bool = False,
scope: tp.Scope | None = None,
) -> tuple[float, tp.Scope | None]:
if self.des is None:
logger.debug(f"{self.des=}")
return -1, None
ori_kp, ori_des = self.in_scope(scope)
if len(ori_kp) < 2:
logger.debug(f"{len(ori_kp)=} < 2")
return -1, None
qry_kp, qry_des = keypoints(query)
matches = flann.knnMatch(qry_des, ori_des, k=2)
good = []
for pair in matches:
if (len_pair := len(pair)) == 2:
x, y = pair
if x.distance < GOOD_DISTANCE_LIMIT * y.distance:
good.append(x)
elif len_pair == 1:
good.append(pair[0])
if draw:
from matplotlib import pyplot as plt
result = cv2.drawMatches(query, qry_kp, self.origin, ori_kp, good, None)
plt.imshow(result)
plt.show()
if len(good) <= 4:
logger.debug(f"{len(good)=} <= 4, {len(qry_des)=}")
return -1, None
qry_pts = np.float32([qry_kp[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
ori_pts = np.float32([ori_kp[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.estimateAffine2D(qry_pts, ori_pts, None, cv2.RANSAC)
if M is None:
logger.debug("M is None")
return -1, None
else:
logger.debug(f"M={M.tolist()}")
M[0][1] = M[1][0] = 0
M[0][0] = M[1][1] = 1
h, w = query.shape
if draw:
matches_mask = mask.ravel().tolist()
pts = np.int32([[[0, 0]], [[w - 1, h - 1]]])
dst = np.int32(cv2.transform(pts, M)).tolist()
dst = [i[0] for i in dst]
dst = np.int32(
[
[dst[0]],
[[dst[0][0], dst[1][1]]],
[dst[1]],
[[dst[1][0], dst[0][1]]],
]
)
disp = cv2.cvtColor(self.origin, cv2.COLOR_GRAY2RGB)
disp = cv2.polylines(disp, [dst], True, (255, 0, 0), 2, cv2.LINE_AA)
disp = cv2.drawMatches(
query,
qry_kp,
disp,
ori_kp,
good,
None,
(0, 255, 0),
matchesMask=matches_mask,
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS,
)
plt.imshow(disp)
plt.show()
pts = np.int32([[[-20, -20]], [[w + 19, h + 19]]])
dst = cv2.transform(pts, M)
rect = dst.reshape(2, 2).tolist()
rect = np.array(rect, dtype=int).tolist()
disp = cropimg(self.origin, rect)
rh, rw = disp.shape
if rh < h or rw < w:
logger.debug(f"{rect=} {rh=} {h=} {rw=} {w=}")
return -1, None
result = cv2.matchTemplate(disp, query, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
if draw:
disp = cropimg(disp, (max_loc, va(max_loc, (w, h))))
plt.subplot(1, 2, 1)
plt.imshow(query, cmap="gray", vmin=0, vmax=255)
plt.subplot(1, 2, 2)
plt.imshow(disp, cmap="gray", vmin=0, vmax=255)
plt.show()
top_left = va(rect[0], max_loc)
scope = top_left, va(top_left, (w, h))
logger.debug(f"{max_val=} {scope=}")
return max_val, scope
def match2d(
self,
query: tp.GrayImage,
draw: bool = False,
scope: tp.Scope | None = None,
) -> tuple[float, tp.Scope | None]:
if self.des is None:
logger.debug(f"{self.des=}")
return -1, None
ori_kp, ori_des = self.in_scope(scope)
if len(ori_kp) < 2:
logger.debug(f"{len(ori_kp)=} < 2")
return -1, None
qry_kp, qry_des = keypoints_scale_invariant(query)
matches = flann.knnMatch(qry_des, ori_des, k=2)
good = []
for pair in matches:
if (len_pair := len(pair)) == 2:
x, y = pair
if x.distance < GOOD_DISTANCE_LIMIT * y.distance:
good.append(x)
elif len_pair == 1:
good.append(pair[0])
if draw:
from matplotlib import pyplot as plt
result = cv2.drawMatches(query, qry_kp, self.origin, ori_kp, good, None)
plt.imshow(result)
plt.show()
if len(good) <= 4:
logger.debug(f"{len(good)=} <= 4, {len(qry_des)=}")
return -1, None
qry_pts = np.float32([qry_kp[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
ori_pts = np.float32([ori_kp[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.estimateAffine2D(qry_pts, ori_pts, None, cv2.RANSAC)
if M is None:
logger.debug("M is None")
return -1, None
else:
logger.debug(f"M={M.tolist()}")
M[0][1] = M[1][0] = 0
M[0][0] = M[1][1] = scale = (M[0][0] + M[1][1]) / 2
logger.debug(f"{scale=}")
h, w = query.shape
if draw:
matches_mask = mask.ravel().tolist()
pts = np.int32([[[0, 0]], [[w - 1, h - 1]]])
dst = np.int32(cv2.transform(pts, M)).tolist()
dst = [i[0] for i in dst]
dst = np.int32(
[
[dst[0]],
[[dst[0][0], dst[1][1]]],
[dst[1]],
[[dst[1][0], dst[0][1]]],
]
)
disp = cv2.cvtColor(self.origin, cv2.COLOR_GRAY2RGB)
disp = cv2.polylines(disp, [dst], True, (255, 0, 0), 2, cv2.LINE_AA)
disp = cv2.drawMatches(
query,
qry_kp,
disp,
ori_kp,
good,
None,
(0, 255, 0),
matchesMask=matches_mask,
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS,
)
plt.imshow(disp)
plt.show()
pts = np.int32([[[-20, -20]], [[w + 19, h + 19]]])
dst = cv2.transform(pts, M)
rect = dst.reshape(2, 2).tolist()
rect = np.array(rect, dtype=int).tolist()
rect_img = cropimg(self.origin, rect)
disp = cv2.resize(rect_img, dsize=None, fx=1 / scale, fy=1 / scale)
result = cv2.matchTemplate(disp, query, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
if draw:
disp = cropimg(disp, (max_loc, va(max_loc, (w, h))))
plt.subplot(1, 2, 1)
plt.imshow(query, cmap="gray", vmin=0, vmax=255)
plt.subplot(1, 2, 2)
plt.imshow(disp, cmap="gray", vmin=0, vmax=255)
plt.show()
top_left = vs(max_loc, (20, 20))
scope = top_left, va(top_left, (w, h))
scope = np.float32(scope).reshape(-1, 1, 2)
scope = cv2.transform(scope, M)
scope = np.int32(scope).reshape(2, 2).tolist()
logger.debug(f"{max_val=} {scope=}")
return max_val, scope
def match3d(
self,
query: tp.GrayImage,
draw: bool = False,
scope: tp.Scope | None = None,
) -> tuple[float, tp.Scope | None]:
if self.des is None:
logger.debug(f"{self.des=}")
return -1, None
ori_kp, ori_des = self.in_scope(scope)
if len(ori_kp) < 2:
logger.debug(f"{len(ori_kp)=} < 2")
return -1, None
qry_kp, qry_des = keypoints_scale_invariant(query)
matches = flann.knnMatch(qry_des, ori_des, k=2)
good = []
for pair in matches:
if (len_pair := len(pair)) == 2:
x, y = pair
if x.distance < GOOD_DISTANCE_LIMIT * y.distance:
good.append(x)
elif len_pair == 1:
good.append(pair[0])
if draw:
from matplotlib import pyplot as plt
result = cv2.drawMatches(query, qry_kp, self.origin, ori_kp, good, None)
plt.imshow(result)
plt.show()
if len(good) <= 4:
logger.debug(f"{len(good)=} <= 4, {len(qry_des)=}")
return -1, None
qry_pts = np.float32([qry_kp[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
ori_pts = np.float32([ori_kp[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(qry_pts, ori_pts, cv2.RANSAC)
if M is None:
logger.debug("M is None")
return -1, None
else:
logger.debug(f"M={M.tolist()}")
h, w = query.shape
if draw:
matches_mask = mask.ravel().tolist()
pts = np.float32(
[
[0, 0],
[0, h - 1],
[w - 1, h - 1],
[w - 1, 0],
]
).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
disp = cv2.cvtColor(self.origin, cv2.COLOR_GRAY2RGB)
disp = cv2.polylines(
disp, [np.int32(dst)], True, (255, 0, 0), 2, cv2.LINE_AA
)
disp = cv2.drawMatches(
query,
qry_kp,
disp,
ori_kp,
good,
None,
(0, 255, 0),
matchesMask=matches_mask,
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS,
)
plt.imshow(disp)
plt.show()
offset = (20, 20)
A = np.array(
[
[1, 0, -offset[0]],
[0, 1, -offset[1]],
[0, 0, 1],
]
)
disp = cv2.warpPerspective(
self.origin, M.dot(A), va((w, h), (40, 40)), None, cv2.WARP_INVERSE_MAP
)
result = cv2.matchTemplate(disp, query, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
if draw:
disp = cropimg(disp, (max_loc, va(max_loc, (w, h))))
plt.subplot(1, 2, 1)
plt.imshow(query, cmap="gray", vmin=0, vmax=255)
plt.subplot(1, 2, 2)
plt.imshow(disp, cmap="gray", vmin=0, vmax=255)
plt.show()
top_left = vs(max_loc, offset)
scope = top_left, va(top_left, (w, h))
scope = np.float32(scope).reshape(-1, 1, 2)
scope = cv2.perspectiveTransform(scope, M)
scope = np.int32(scope).reshape(2, 2).tolist()
logger.debug(f"{max_val=} {scope=}")
return max_val, scope